US009281990B2

a2 United States Patent

Hidai

US 9,281,990 B2
Mar. 8, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)
(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

ETHERNET UDP CHECKSUM

COMPENSATION

Applicant: JDS Uniphase Corporation, Milpitas,
CA (US)

Inventor: Takashi Hidai, Palo Alto, CA (US)

Assignee: Viavi Solutions Inc., Milpitas, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 332 days.

Appl. No.: 13/769,125

Filed: Feb. 15, 2013

Prior Publication Data
US 2013/0215908 A1 Aug. 22,2013

Related U.S. Application Data

Provisional application No. 61/600,511, filed on Feb.
17, 2012.

Int. Cl1.

HO4L 29/06 (2006.01)

HO4L 12/54 (2013.01)

HO4L 12/931 (2013.01)

HO4L 12/939 (2013.01)

HO4N 7/24 (2011.01)

HO4L 12/861 (2013.01)

U.S. CL

CPC ... HO04L 29/06122 (2013.01); HO4L 12/5601

(2013.01); HO4L 49/00 (2013.01); HO4L
49/557 (2013.01); HO4L 69/04 (2013.01);
HO4L 69/164 (2013.01); HO4L 69/22
(2013.01); HO4L 49/90 (2013.01); HO4N 7/24
(2013.01)

Field of Classification Search
CPC . HO4L 69/164; HO4L 29/06122; HO4L 49/00;
HO4L 69/04; HO4L 69/22; H04L 12/56

201

HAL

USPC 370/392, 401, 476
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,449,252 B1* 9/2002 Marsteiner HO04Q 11/0478
370/230

6,826,181 B1* 11/2004 Higashida HO04Q 11/0478
370/390

2002/0089987 Al* 7/2002 Sasaki HO4L 12/5601
370/395.2

2006/0153155 Al* 7/2006 Jacobsen HO4L 1/1829
370/338

2007/0211724 Al* 9/2007 Johansson HO4L 49/00
370/392

* cited by examiner

Primary Examiner — JaeY Lee
Assistant Examiner — Jean F Voltaire
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

(57) ABSTRACT

In the methods and devices of the present disclosure, a
dummy compensation word is added to the data packet such
that the UDP checksum value need not be modified from any
previous value, regardless of changes to the UDP payload.
Because the UDP checksum value is not modified in embodi-
ments of the present disclosure, there is no delay waiting for
a UDP checksum value to be calculated and no need for
additional buffers to store the data packet contents because of
UDP checksum calculations. The dummy compensation
word is calculated so that the unmodified value maintained in
the checksum is the checksum for the data packet including
the dummy compensation word. By placing the compensa-
tion word in the data packet after the last word in the UDP
payload, there is no, or very minimal, processing delay and
data packet buffering hardware is significantly reduced.

20 Claims, 6 Drawing Sheets

Header

IP Headsr

[I

210
208 j 212 214
j Checksumn j j
: Conpensation
UDP Header : UBF Payload Word

i

X

3

9

A

Sourcn 18 sbdesedf Sex & Dass 3
’ﬁ DEer ek

ﬁee\}l‘* midrosy 1 Fratoel N

206

304 —

= 0

302 /’E A2 bit register

N, S—

Checksun Uonpensation
Hord Seneration Logic

U.S. Patent Mar. 8, 2016 Sheet 1 of 6 US 9,281,990 B2

\/
HA

112

Figure 1
(Prior Art)

\
A
110

111

106

102
!
104

100

e, o

U.S. Patent Mar. 8, 2016 Sheet 2 of 6 US 9,281,990 B2

Sy o
,.\-’»"‘:5.,.

" -
-
-

214

2

Figure 2

\
A
210

208
!
211

206

202
!

204

200

L. oA
et
S Sy

US 9,281,990 B2

Sheet 3 of 6

Mar. 8, 2016

U.S. Patent

€ A3

.. IRy BETIRIVLRN PIOH | e— 1443

WOTIRRUAivo]) WHERIYD

&

-///////////*

J
o~
o
)

JNERTH

FOORIIIIIIIIEIPIIIPY

T ARAIA
L

90¢

.. e
o
o,

2

P pROTASY JUR | aspReR 4an Japesg 41

woryesusduoeg _
R S THed

¥0¢

Tz 712 80C 20T

10¢

US 9,281,990 B2

Sheet 4 of 6

Mar. 8, 2016

U.S. Patent

H dang1

weadiaey e ARRFY /
90t

:
/ pitcicariviyl

-~
9%
-
“vpor”
¥
Z
o 7
gy
1
w
o
<

3N .. ™ 2ot

FNEERY
y 4/ 901

A df M.,..ﬂ,w / R dRET

F 3

KXo .mml/

(4017 70t

US 9,281,990 B2

Sheet 5 of 6

Mar. 8, 2016

U.S. Patent

S an31q

12y0ed ay3 O HuN UOIIBWJOUI PRIIIIDS BY)
Ul Jaquwnu uollesuadwod wnsy23yd say3 SulolS

A

wns suluuna ayy wodj

905 — | Jaquwnu uonesuadwod wnsyoayd e guilendjed
4

wns suluuna ayj 0} pappe pue peaJ ale 1»oed
yOG —— 3Y3 JO Jlun uoIleWJIOJUI P1I3|3S B IN([|€ [13UN
wns 3uiuund e 01 peaJ 3uiaq syun ayl sulppy

A

206 —— Jlun-Ag-jiun 1ay2ed ejep e Suipeay

¥~ 00¢s

US 9,281,990 B2

Sheet 6 of 6

Mar. 8, 2016

U.S. Patent

9 21n31q

}IUN uoIlewWJoLul
|e}ISIp eJIxa ul anjea Awwnp ay3i sul401s

4

peojAed ay3 Jo pua ayjl Jeau 1y0ed eyep
341 Ul Jun uollewJojul [e3sdip eJixa ue 3ulppy

4

peaJ Sem jeyl wnsyoayd ayj sajepl|jea
wns uiuund 3y ul anjea uolesuadwod
931 Suipn|oul 3eyl yons wns guiuund
9y} woJ} anjeA uollesuadwod e gunyejnojed

4

}30ed eiep 9yl Joj BjNWJO} UOIleIND|RD
wnsy2aay2 e 01 3uip1022e wns gujuund
e 01 peadJ 3ulag SHuUN 3yl Sulle|NWNIDY

/

wnsy29yd ayl suipeal
duipnjaul ‘vun-Ag-1iun 1yoed ejep e 3uipesay

US 9,281,990 B2

1

ETHERNET UDP CHECKSUM
COMPENSATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present disclosure claims priority from U.S. Provi-
sional Patent Application No. 61/600,511 filed Feb. 17,2012,
entitled “Ethernet UDP Checksum Compensation”, which is
incorporated herein by reference for all purposes.

TECHNICAL FIELD

The present disclosure relates to data packet checksums
and more particularly to improvements in data packet check-
sum calculations to reduce the required hardware, power
consumption and data packet processing time.

BACKGROUND OF THE INVENTION

FIG. 1 illustrates a conventional IP network data packet
100 comprising an IP header 102 including source and des-
tination IP addresses 104, 106; a UDP header 108 including a
length 111, a UDP checksum 110; and a UDP payload 112.
Each of these data items comprises a series of digital infor-
mation units, such as 16-bit words.

A conventional method of UDP checksum calculation will
now be described. At the beginning, a 32-bit register is ini-
tialized with the protocol type, such as 0x11 for UDP. Then,
the source IP address field 104 and destination IP address field
106 of the IP header 102 are added to the 32-bit register. Next
some data from the UDP header data 108 is added omitting
the checksum datum 110 but doubling the length datum (not
illustrated in FIG. 1). Then each datum of the UDP payload
112 is added.

After parsing the data packet 100, the most significant 16
bits and the least significant 16 bits of the 32-bit register are
added together and the 2’s complement of the result (e.g.
subtracting one from the result then applying bit inversion) is
calculated to arrive at the UDP checksum value. Finally, this
value is written into the UDP checksum 110 of the UDP
header 108, for example at the 4th word.

An example of tabulating this checksum calculation is in
Table 1 below. The calculation on that input data is a 16-bit
word based addition in a 32-bit register:

TABLE 1
Item Name 16-bit Input 32-bit Register
MAC header Jiiiy 00000011
Jiiiy 00000011
Jiiiy 00000011
0024 00000011
e89d 00000011
453¢ 00000011
0800 00000011
IPv4 header 4500 00000011
0044 00000011
bd50 00000011
0000 00000011
8011 00000011
3bd3 00000011
IP Source address Oadb 00000a5¢
3739 00004195
IP Destination address fitf 00014194
Jiiiy 00024193
UDP header 0405 00024598
079b 00024d33
length 0030 00024d93
Checksum 5576 00024d93

10

15

20

25

30

35

40

45

50

55

60

65

2
TABLE 1-continued

Item Name 16-bit Input 32-bit Register

Payload 4e56 00029be9
3550 0002d139
5444 0003257d
4158 000366d5
4141 00032816
424e 0003ea64
5355 00043db9
784d 0004b606
5644 00050c4a
4643 0005528d
4d31 00059fbe
Sadf 0005fa0d
537a 00064d87
4541 000692¢8
6233 0006f4fb
4a54 00073faf
6158 0007a0a7
5242 0007f2¢9
6257 85540
5541 0008aa81

In table 1, the 32-bit register begins initialized with the
value 0x11, which is the UDP protocol type value. A data
processing window reads the data packet 100 one data unit at
a time. In table 1 each data unit is 1 word expressed in
hexadecimal notation. As the window proceeds word by word
through the packet, the relevant data values are accumulated
into the 32-bit register value. When the window reaches the
length datum, it is added twice to account for the 16-bit size of
each datum in the packet. When the window reaches the end
of the UDP payload 112, the 32-bit register totals
0x0008 AA81. The checksum is then calculated by adding the
most significant word (0x0008) and the least significant word
(0xAA81) of the 32-bit register and taking the 2’s comple-
ment of that sum (0x5576). This value is the conventional
checksum of the packet and is written into the checksum 110.

Because the processing window proceeds in a unit by unit
sequence from the start of the data packet 100 to its end, if the
value to be written to a unit is not know at the time it is in the
processing window, transmission of any subsequent units
must be delayed and any processing of subsequent units while
waiting must be stored into a temporary memory buffer.

In a conventional checksum calculation, the checksum
final value cannot be determined until the processing window
has reached the end of the UDP payload 112. Accordingly
temporary memory storage is required to buffer all data units
between the UDP checksum 110 and the end of the UDP
payload 112 for each data packet 110. The size of this tem-
porary storage depends directly on the size of the UDP pay-
load 112. Because the checksum value cannot be known until
all UDP payload data has been processed, transmission of the
packet 100 must be delayed from when the processing win-
dow reaches the UDP checksum 110 until the processing
window reaches the end of the UDP payload 112.

When processing data packets 100 using the conventional
method for calculating UDP checksum, a temporary storage
(memory) or buffer may hold the entire data packet for the
UDP checksum calculation increasing the gate count
(memory) of the ASIC.

When real-time processing of data packets is required, the
data processing should minimize or eliminate any delay that
would prevent sequentially forwarding the packet unit-by-
unit after processing unit-by-unit through the data processing
window. As described above, this is not possible with con-
ventional checksum calculations. Thus the delivery, transmis-
sion or forwarding of any subsequent units in the packet must
be delayed until all of the UDP payload 112 has been pro-

US 9,281,990 B2

3

cessed. Providing a data-processing window that can read all
of'the UDP payload units in parallel requires ever increasing
hardware resources and power consumption as the length of
UDP payloads increase.

SUMMARY OF THE INVENTION

According to the present disclosure, a dummy compensa-
tion word is added to the data packet such that the UDP
checksum value need not be modified from any previous
value, regardless of changes to the UDP payload. Because the
UDP checksum value is not modified in embodiments of the
present disclosure, there is no delay waiting for a UDP check-
sum value to be calculated and no need for additional buffers
to store the data packet contents because of UDP checksum
calculations. The dummy compensation word is calculated so
that the unmodified value maintained in the checksum is the
checksum for the data packet including the dummy compen-
sation word. By placing the compensation word in the data
packet after the last word in the UDP payload, there is no, or
very minimal, processing delay and data packet buffering
hardware is significantly reduced.

An embodiment of the present disclosure provides a
method for checksum calculation of a data packet comprising
a plurality of digital information units including a checksum
and a payload, the method comprising: (a) reading the packet
unit by unit, including reading the checksum; (b) accumulat-
ing the units being read in (a) to a running sum according to a
checksum calculation formula for the data packet; (c) calcu-
lating a compensation value from the running sum of (b) such
that including the compensation value in the running sum
validates the checksum read in (a); (d) adding an extra digital
information unit in the data packet near the end of the pay-
load; and (e) storing the dummy value in extra digital infor-
mation unit.

Another embodiment of the present disclosure provides a
device for checksum calculation of a data packet comprising
a plurality of digital information units including a checksum
and a payload, the device comprising: circuitry (a) for reading
the packet unit by unit, including reading the checksum;
circuitry (b) for accumulating the units being read by circuitry
(a) to a running sum according to a checksum calculation
formula for the data packet; circuitry (c) for calculating a
compensation value from the running sum such that including
the compensation value in the running sum validates the
checksum read in circuitry (a); circuitry (d) for adding an
extra digital information unit in the data packet near the end of
the payload; and circuitry (e) for storing the dummy value in
extra digital information unit.

A further embodiment of the present disclosure provides a
device for checksum calculation of a data packet comprising
a plurality of digital information units including a checksum
and a payload, the device comprising: a processor for execut-
ing instructions stored in a non-transitory memory; the
instructions comprising: instructions (a) for reading the
packet unit by unit, including reading the checksum; instruc-
tions (b) for accumulating the units being read in instructions
(a) to a running sum according to a checksum calculation
formula for the data packet; instructions (c) for calculating a
compensation value from the running sum of instructions (b)
such that including the compensation value in the running
sum validates the checksum read in instructions (a); instruc-
tions (d) for adding an extra digital information unit in the
data packet near the end of the payload; and instructions (e)
for storing the dummy value in extra digital information unit.

Where alternative embodiments and additional aspects of
those embodiments are described in the present disclosure,

25

35

40

45

55

4

these embodiments and aspects may be combined in any
manner within a single embodiment unless the present dis-
closure suggests otherwise. While preferred embodiments
may be illustrated or described herein, they are not intended
to limit the invention. Rather, numerous changes including
alternatives, modifications and equivalents may be made as
would be understood by the person skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described with
reference to the following figures:

FIG.1isablock diagram illustrating a prior art data packet.

FIG. 2 is a block diagram illustrating a data packet accord-
ing to the present disclosure.

FIG. 3 is a block diagram illustrating processing of a data
packet according to the present disclosure.

FIG. 4 illustrates in block diagrams three steps of a pro-
cessing window processing a data packet according to the
present disclosure.

FIG. 5 is a flow chart of an example method for checksum
calculation of a data packet in real time, wherein the data
packet includes a header and a payload each including plu-
rality of digital information units.

FIG. 6 is an example process diagram for dummy value
calculation according to the present disclosure.

DETAILED DESCRIPTION

In FIG. 2, a data packet 200 implementing the present
invention is illustrated. Similar to the data packet 100 of FIG.
1, data packet 200 comprises an ordered series of digital
information units, such as 16-bit words. Data information
units can comprise any number of bits per unit, for example,
one byte (8-bits), a word (16-bits), 32-bits, 64-bits any other
sizes.

Data packet 200 comprises an IP header 202 including
source IP address 204 and destination IP address 206; then a
UDP Header 208 including a UDP checksum 210 and a length
211; and then UDP payload 212. Data packet 200 also
includes a dummy compensation word 214 post-pended to
the UDP payload 212. This means that the total size of the
packet 200 is increased by 1 information unit and length 211
is accordingly incremented.

When processing each data packet 200 according to the
present disclosure, the UDP checksum 210 is left unmodified.
Instead of re-calculating a UDP checksum 110 and overwrit-
ing the old value, the given or pre-existing UDP checksum
value is left unmodified in the checksum 210. To ensure the
UDP checksum 210 remains valid for the whole packet 200,
a dummy compensation word 214 is added in the UDP pay-
load 212 as the last word in the packet 200 and the length 211
is incremented by one. The dummy compensation word 214
is calculated such that the conventional UDP checksum cal-
culation on a packet 200 including the dummy compensation
word 214 yields the unmodified UDP checksum 110 already
in the packet 200.

By not modifying the UDP checksum 210, there is no delay
awaiting calculations because the UDP checksum 210 can be
immediately transmitted (for example, in word-by-word real-
time processing of packets). Without a processing bottleneck
at the UDP checksum 210, all of the UDP payload 212 can be
immediately forwarded or transmitted instead of requiring
additional temporary memory buffering so that the order of
units are not disturbed. At the same time the gate count can be
significantly reduce because it is no longer necessary to buffer
the UDP payload 212.

US 9,281,990 B2

5

Because the total packet size is increased by one when the
dummy compensation word 214 is added, a new UDP length
211 must replace the previous length 211 to ensure the
dummy compensation word 214 is included in the packet 200.
Additional logic increments the length 211 by one when
processing the packet 200 in anticipation of adding the
dummy compensation word. This may add a couple of data
latches, an adder and delay the packet 200 a couple of clock
cycles; however this additional logic is minimal, can be
accomplished in real time, and does not significantly delay
processing of the packet 200. This is a significantly smaller
increase in chip size and processing delay than occurs under
conventional checksum calculations.

Calculation of the dummy compensation word 214 is now
described with reference to FIG. 3. Although the UDP check-
sum 210 remains unchanged, a 32-bit register continues to
accrue the relevant fields and the packet 200 is processed in
the same manner as the 32-bit register for the conventional
checksum calculation; however the value that accrues in the
32-bit register 302 is now used for calculating the dummy
compensation word 214 and the length 211 is incremented by
one when it is processed. In some embodiments, the register
is of a size (or number of bits) that is twice the size of the
digital information units being processed. The 32-bit register
302 may be implemented in any known form of hardware or
software as desired.

Checksum compensation word generation logic 304 cal-
culates the dummy compensation word 214. In some embodi-
ments, it also stores the checksum value 210 in a temporary
memory storage or buffer when it is processed. When the
UDP payload 212 has been processed by the 32 bit register
302, the checksum compensation word generation logic 304
calculates the dummy compensation word 214 using the buft-
ered, unmodified checksum 210 and the new, incremented
UDP length 211. The checksum compensation word genera-
tion logic 304 may be implemented in any known form of
hardware or software as desired.

The dummy compensation word 214 can be calculated by
taking the two’s complement of the sum of the most signifi-
cant and least significant words of the 32-bit register then
adding the bit inversion of the unmodified checksum 210.
Expressed mathematically: Dummy Compensation Word=~
(MS[16]+LS[16]-1)+~Checksum, where MS[16] is the most
significant word of the 32-bit register 302, L.S[16] is the least
significant word of the 32-bit register 302 and the tilde opera-
tion (~) is bit inversion.

In embodiments where the digital information unit size is
not 16-bits, calculating the dummy compensation word 214
involves a register of double the size of the digital information
unit size, performing the same calculation by adding the top
half of the register to the bottom half of the register and
yielding a dummy compensation word 214 that is the same
size as the digital information unit size. Instead of doubling
the length 211 when accruing the register, the length is mul-
tiplied by the digital information unit size. Although dummy
compensation word 214 has been described and named as a
word, (implying 16-bit size), the compensation word may be
any size: byte, word, double word, 64-bits or other size con-
sistent with the size of the digital information units being
processed.

By placing the dummy compensation word 214 as the last
word in the packet 200, the dummy compensation word 214
is processed at the end of the UDP payload 212 which is the
same time when the 32-bit register 302 has completed accru-
ing the relevant fields from the packet 200. Accordingly, there
is significantly reduced delay between completing calcula-
tion of the dummy compensation word 214 and the window

30

40

45

60

65

6

when that word must be forwarded or transmitted. This elimi-
nates the need for more gates to store the UDP payload 212
which may be several kilobytes in size and reduces a delay
from thousands of clock cycles (dependent on the size of the
UDP payload) to a small number of clock cycles that is
independent of the UDP payload size.

The 32-bit register 302 accrues the IP source and destina-
tion addresses, 204, 206 the UDP header 208 (excluding the
checksum value 210 which is buffered in the checksum com-
pensation word generation logic 304 but adding the incre-
mented length 211 value multiplied by the information unit
size), and all of the UDP payload 212 (excluding the dummy
compensation word 214 which is being calculated). After all
of the relevant data units are accumulated in the 32-bit regis-
ter, then checksum compensation word generation logic 302,
with the buffered UDP checksum 210, calculates the dummy
compensation word 214 which is attached at the end of the
UDP payload 212 to make the given UDP checksum 210 on
the UDP header 208 a valid UDP checksum value for packet
200. Since there was never any delay waiting for a data unit to
be processed, no additional storage space is needed.

An example of the running calculation of the dummy com-
pensation word is illustrated in Table 2. This table uses the
same packet as table 1; however the UDP checksum was
changed to (0xABCD), an invalid checksum value without
the compensation dummy word 214, 410:

TABLE 2
Item Name 16-bit Input 32-bit Register
MAC header Jiiig 00000011
Jiiig 00000011
Jiiig 00000011
0024 00000011
e89d 00000011
453¢ 00000011
0800 00000011
IPv4 header 4500 00000011
0044 00000011
bd50 00000011
0000 00000011
8011 00000011
3bd5 00000011
IP Source address Oadb 00000a5¢
3739 00004195
IP Destination address fiff 00014194
Jiiig 00024193
UDP header 0405 00024598
079b 00024d33
Length + 1 0031 00024D95
Checksum ABCD 00024D95
Payload 4e56 00029BEB
3550 0002D13B
5444 0003257F
4158 000366D7
4141 0003A818
424e 0003EA66
5355 00043DBB
784d 0004B608
5644 00050C4C
4643 0005528F
4d31 00059FCO
Sadf 0005FAOF
537a 00064D8&9
4541 000692CA
6233 0006F4FD
4a54 00073F51
6158 0007A0A9
5242 0007F2EB
6257 00085542
5541 0008AAR3
Dummy Compensation A9A7

Word

US 9,281,990 B2

7

When data processing reaches the dummy word for the
packet in Table 2, the 32-bit register has accumulated to
0x008aa83. The unmodified checksum value was 0OxABCD.
It was stored in a temporary register. The dummy word is
calculated by taking the two’s complement of the sum of the
most significant word and the least significant word of the
32-bit register and adding the two’s complement of the
unmodified checksum. This calculation is illustrated math-
ematically in Table 3.

TABLE 3

~(0x0008 + 0XAA83 — 1) + ~(0XABCD)
~0XAASA + ~0XABCC

05575 + 0x5432

= 0XA9A7

Dummy Compensation
Word

In FIG. 4, an FRP packet 402 is processed through a win-
dow 404 in real time. The window 404 represents the current
computational focus point of a computing system implement-
ing an embodiment of the present disclosure. In FIG. 4, the
window 404 processes a single digital information unit at a
time. In some embodiments, the window 404 may process
multiple digital information units simultaneously.

Similar to 32-bit register 302, register 406 adds words of
the packet 402, e.g. FRP packet, in real time. Which digital
information units of the packet 402 are accumulated and
which are skipped depends on the packet being processed. In
some embodiments, all units except one may be accumulated
by register 406.

The packet 402 “runs” through the window 406 at steps (A)
and (B). The previous checksum present in the packet 402 is
separately stored in compensation logic 408. When the win-
dow 406 is at the last word of the packet (step (C)), a dummy
compensation word 410 is written into the packet 402. The
dummy compensation word 410 is calculated in a similar
manner as described above.

Atthe receiver site, the compensation word 214,410 can be
used in the traditional checksum calculations to confirm the
checksum 210. In some embodiment, the receiver site will
know that the sender adds a dummy compensation word 214,
410 at the very end of the payload and will ignore (or remove)
the word to retrieve the original payload data. Alternatively,
the receiver site need not be aware there is a dummy check-
sum word 214, 410 in the packet 200, 402 and the dummy
checksum word 214, 402 can ultimately be discarded when
the payload 212 is consumed by client software receiving the
packet.

Referring now to FIG. 5, an example method 500 for
checksum calculation of a data packet in real time is illus-
trated. The data packet includes a header and a payload each
including a plurality of digital information units. At 502, the
data packet is read unit-by-unit, such as through processing
window 404. At 504, the units being read at 502 are added into
a running sum until all but a selected information unit of the
packet has been read and added to the running sum. In some
embodiments, some portions are added with greater weight
(such as doubling the length 211). At 506, a checksum com-
pensation number is calculated from the running sum. In
some embodiments, the data packet includes a previous
checksum stored in a checksum information unit of the digital
information units of the data packet, and 506 includes adding
or a subtracting the previous checksum to the running sum. At
508, the checksum compensation number calculated at 506 is
stored in the selected information unit of the packet. In some
embodiments of method 500, the selected information unit is
the last information unit of the data packet.

10

15

30

40

45

55

8

Referring now to FIG. 6, an example process diagram 600
for dummy value calculation according to the present disclo-
sure is illustrated. This process 600 may be implemented as a
method, as dependent hardware circuitry, as instructions
stored in non-transitory computer executable instructions or
as any combinations thereof.

Example process 600 illustrates checksum calculation of a
data packet comprising a plurality of digital information units
including a checksum and a payload. At 602, the method
reads the packetunit by unit, including reading the checksum.
Typically the packet is read sequentially, in order, from the
first unit to the last unit according to the data layout of the
packet illustrated in FIG. 2.

At 604, the process 600 accumulates the units being read in
602 to a running sum according to a checksum calculation
formula for the data packet. The running sum is stored in a
register or memory location. In some embodiments, the
checksum calculation formula is selected from the group
comprising a UDP packet checksum formula and an FRP
packet checksum formula. The checksum calculation formula
for the data packet comprises a standard, checksum calcula-
tion for the packet type, for example RFC 793 (IPv4 TCP
checksum), RFC 2460 (IPv6TCP checksum), RFC 768 (IPv4
UDP checksum) and RFC 2460 (IPv6 UDP checksum). Other
checksum calculation formulas (past or present) for these, or
other, packet types are equally possible. In some embodi-
ments, 604 may further comprise accumulating the running
sum in a register having a most significant digital information
unit and a least significant digital information unit.

At 606, the process 600 calculates a compensation value
from the running sum of 604 such that including the compen-
sation value in the running sum validates the checksum read
in 602. In some embodiments, 606 may further comprise
calculating the compensation value equivalent to the formula
~(MS+LS-1)+~checksum where MS is the most significant
digital information unit, LS is the least significant digital
information unit and ~ is the bit inversion operator.

At 608, the process 600 adds an extra digital information
unit in the data packet near the end of the payload. In some
embodiments, 608 may further comprise incrementing a
length datum in the packet by one digital information unit
prior to 604 accumulating the length datum. In some embodi-
ments, 608 may further comprise post-pending the extra digi-
tal information unit to the payload. Where the extra digital
information unit is post-pended, the process 600 may further
comprise transmitting the data packet unit-by-unit in real-
time.

At 610, the process 600 stores the dummy value in extra
digital information unit. By storing the dummy value closer to
the last unit in the payload, embodiments of the present dis-
closure reduce the processing delay to calculate the dummy
value and approach real-time processing of the packet.

In some embodiments of the present disclosure some or all
of process 600 is implemented directly in hardware circuitry
such as application specific integrated circuits (ASICs), gate
arrays, field programmable gate arrays (FPGAs) and other
circuitry. In some embodiments, some or all of the process
600 may be implemented as instructions stored in non-tran-
sitory computer readable memory thatis read and executed by
a computer processor.

In some embodiments of the present disclosure, the
dummy compensation word may be placed elsewhere in the
UDP payload, near the end, but not as the last digital infor-
mation unit in the packet. Although less than ideal, this still
provides a reduction in chip size because only the portion of
the UDP payload after the compensation word needs to be
buffered and this still provides areduction in processing delay

US 9,281,990 B2

9

because only a portion of the payload after the dummy com-
pensation word needs to be delayed.

It will be appreciated by those skilled in the art that block
diagrams herein can represent conceptual views of illustrative
circuitry embodying the principles of the technology. Simi-
larly, it will be appreciated that any flow charts, state transi-
tion diagrams, pseudocode, data format diagrams and the like
represent various configurations, systems and processes
which may be substantially represented in computer readable
medium and so executed by a computer or processor, whether
or not such computer or processor is explicitly shown.

The functions of the various elements including functional
blocks labeled or described as “processors”. “controllers” or
“logic” may be provided through the use of dedicated hard-
ware as well as hardware capable of executing software in
association with appropriate software. When provided by a
processor, the functions may be provided by a single dedi-
cated processor, by a single shared processor, or by a plurality
of individual processors, some of which may be shared or
distributed. Moreover, explicit use of the term “processor”,
“controller” or “logic” should not be construed to refer exclu-
sively to hardware capable of executing software, and may
include, without limitation, digital signal processor (DSP)
hardware, read only memory (ROM) for storing software,
random access memory (RAM), and non-volatile storage.

When implemented in software, the functions of embodi-
ments of the present disclosure may be stored as one or more
instructions or code on a non-transitory computer-readable or
processor-readable storage medium. The steps of a method,
process or algorithm disclosed herein may be embodied in a
processor-executable software module which may reside on a
computer-readable or processor-readable storage medium. A
non-transitory computer-readable or processor-readable
media includes both computer storage media and tangible
storage media that facilitate transfer of a computer program
from one place to another. A non-transitory processor-read-
able storage media may be any available media that may be
accessed by a computer. By way of example, and not limita-
tion, such non-transitory processor-readable media may com-
prise RAM, ROM, EEPROM, CD-ROM or other optical disk
storage, magnetic disk storage or other magnetic storage
devices, or any other tangible storage medium that may be
used to store desired program code in the form of instructions
or data structures and that may be accessed by a computer or
processor. Disk and disc, as used herein, includes compact
disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk, and blu-ray disc where disks usually
reproduce data magnetically, while discs reproduce data opti-
cally with lasers. Combinations of the above should also be
included within the scope of computer-readable media. Addi-
tionally, the operations of a method or algorithm may reside
as one or any combination or set of codes and/or instructions
on a non-transitory processor-readable medium and/or com-
puter-readable medium, which may be incorporated into a
computer program product.

The hardware used to implement the various illustrative
logics, logical blocks, modules, circuitry, registers and cir-
cuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a gen-
eral purpose processor, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but, in the alternative, the processor
may be any conventional processor, controller, microcontrol-

10

20

25

30

35

40

45

50

55

60

10

ler, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration. Alternatively, some steps or
methods may be performed by circuitry that is specific to a
given function.

The above-described embodiments of the present disclo-
sure can be implemented in any of numerous ways. For
example, the embodiments may be implemented using hard-
ware, software or a combination thereof. When implemented
in software, the software code can be executed on any suitable
processor or collection of processors, whether provided in a
single computer or distributed among multiple computers.
Such processors may be implemented as integrated circuits,
with one or more processors in an integrated circuit compo-
nent. Though, a processor may be implemented using cir-
cuitry in any suitable format.

Further, it should be appreciated that a computer may be
embodied in any of a number of forms, such as a rack-
mounted computer, a desktop computer, a laptop computer, or
a tablet computer. Additionally, a computer may be embed-
ded in a device not generally regarded as a computer but with
suitable processing capabilities, including a Personal Digital
Assistant (PDA), a smart phone or any other suitable portable
or fixed electronic device. Further, the computer may be
physically connected to and part of the test system, or it may
be connected via such interfaces as known in the art includ-
ing, for example Ethernet, Bluetooth, WiFi, USB, the Inter-
net, etc.

Also, a computer may have one or more input and output
devices. These devices can be used, among other things, to
present a user interface. Examples of output devices that can
be used to provide a user interface include printers or display
screens for visual presentation of output and speakers or other
sound generating devices for audible presentation of output.
Examples of input devices that can be used for auser interface
include keyboards, and pointing devices, such as mice, touch
pads, and digitizing tablets. As another example, a computer
may receive input information through speech recognition or
in other audible format.

Such computers may be interconnected by one or more
networks in any suitable form, including as a local area net-
work or a wide area network, such as an enterprise network or
the Internet. Such networks may be based on any suitable
technology and may operate according to any suitable proto-
col and may include wireless networks, wired networks or
fiber optic networks.

Also, the various methods or processes outlined herein
may be coded as software that is executable on one or more
processors that employ any one of a variety of operating
systems or platforms. Additionally, such software may be
written using any of a number of suitable programming lan-
guages and/or programming or scripting tools, and also may
be compiled as executable machine language code or inter-
mediate code that is executed on a framework or virtual
machine.

In this respect, the invention may be embodied as a com-
puter readable medium (or multiple computer readable
media) (e.g., a computer memory, one or more floppy discs,
compact discs (CD), optical discs, digital video disks (DVD),
magnetic tapes, flash memories, circuit configurations in
Field Programmable Gate Arrays or other semiconductor
devices, or other non-transitory, tangible computer storage
medium) encoded with one or more programs that, when
executed on one or more computers or other processors, per-
form methods that implement the various embodiments of the

US 9,281,990 B2

11

invention discussed above. The computer readable medium
or media can be transportable, such that the program or pro-
grams stored thereon can be loaded onto one or more different
computers or other processors to implement various aspects
of the present invention as discussed above. As used herein,
the term “non-transitory computer-readable storage medium”
encompasses only a computer-readable medium that can be
considered to be a manufacture (i.e., article of manufacture)
or a machine.

The terms “program”, “software” or “code” are used herein
in a generic sense to refer to any type of computer code or set
of computer-executable instructions that can be employed to
program a computer or other processor to implement various
aspects of the present invention as discussed above. Addition-
ally, it should be appreciated that according to one aspect of
this embodiment, one or more computer programs that when
executed perform methods of the present invention need not
reside on a single computer or processor, but may be distrib-
uted in a modular fashion amongst a number of different
computers or processors to implement various aspects of the
present invention.

Computer-executable instructions may be in many forms,
such as program modules, executed by one or more comput-
ers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. Typically the functionality of the program mod-
ules may be combined or distributed as desired in various
embodiments.

Where example embodiments and alternatives have been
described, it is understood that any number of these examples
and alternatives may be combined within a single embodi-
ment unless otherwise indicated.

I claim:

1. A method for checksum calculation of a data packet
comprising a plurality of digital information units including a
checksum and a payload, the method comprising:

(a) reading the packet unit by unit, including reading the

checksum;

(b) accumulating the units being read in (a) to a running
sum according to a checksum calculation formula for the
data packet;

(c) calculating a compensation value from the running sum
of (b) such that including the compensation value in the
running sum validates the checksum read in (a);

(d) adding an extra digital information unit in the data
packet near an end of the payload; and

(e) storing a compensation value in the extra digital infor-
mation unit.

2. The method according to claim 1 wherein (d) further
comprises incrementing a length datum in the data packet by
one digital information unit prior to (b) accumulating the
length datum.

3. The method according to claim 1 wherein (d) further
comprises post-pending the extra digital information unit to
the payload.

4. The method according to claim 3 further comprising
transmitting the data packet unit-by-unit in real-time.

5. The method according to claim 1 wherein (b) further
comprises accumulating the running sum in a register having
a most significant digital information unit and a least signifi-
cant digital information unit.

6. The method according to claim 5 wherein (c) further
comprises calculating the compensation value equivalent to
the formula ~(MS+LS-1)+~checksum where MS is the most
significant digital information unit, LS is the least significant
digital information unit and ~ is a bit inversion operator.

10

20

25

30

35

40

45

50

55

60

65

12

7. The method according to claim 1 wherein the checksum
calculation formula is selected from the group comprising a
UDBP packet checksum formula and an FRP packet checksum
formula.

8. A device for checksum calculation of a data packet
comprising a plurality of digital information units including a
checksum and a payload, the device comprising:

circuitry (a) for reading the packet unit by unit, including

reading the checksum;

circuitry (b) for accumulating the units being read by cir-

cuitry (a) to a running sum according to a checksum
calculation formula for the data packet;

circuitry (c) for calculating a compensation value from the

running sum such that including the compensation value
in the running sum validates the checksum read in cir-
cuitry (a);
circuitry (d) for adding an extra digital information unit in
the data packet near an end of the payload; and
circuitry (e) for storing a dummy value in the extra digital
information unit.

9. The device according to claim 8 wherein circuitry (d)
comprises circuitry for incrementing a length datum in the
data packet by one digital information unit prior to circuitry
(b) accumulating the length datum.

10. The device according to claim 8 wherein circuitry (d)
comprises circuitry for post-pending the extra digital infor-
mation unit to the payload.

11. The device according to claim 10 further comprising
circuitry for transmitting the data packet unit-by-unit in real-
time.

12. The device according to claim 8 wherein circuitry (b)
comprises circuitry for accumulating the running sum in a
register having a most significant digital information unit and
a least significant digital information unit.

13. The device according to claim 12 wherein circuitry (c)
comprises circuitry for calculating the compensation value
equivalent to the formula ~(MS+LS-1)+~checksum where
MS is the most significant digital information unit, LS is the
least significant digital information unit and ~ is a bit inver-
sion operator.

14. The device according to claim 8 wherein the checksum
calculation formula is selected from the group comprising a
UDBP packet checksum formula and an FRP packet checksum
formula.

15. A device for checksum calculation of a data packet
comprising a plurality of digital information units including a
checksum and a payload, the device comprising:

a processor for executing instructions stored in a non-

transitory memory;

the instructions comprising:

instructions (a) for reading the packet unit by unit,
including reading the checksum;

instructions (b) for accumulating the units being read in
instructions (a) to a running sum according to a check-
sum calculation formula for the data packet;

instructions (c¢) for calculating a compensation value
from the running sum of instructions (b) such that
including the compensation value in the running sum
validates the checksum read in instructions (a);

instructions (d) for adding an extra digital information
unit in the data packet near an end of the payload; and

instructions (e) for storing a dummy value in the extra
digital information unit.

16. The device according to claim 15 wherein instructions
(d) further comprises incrementing a length datum in the data
packet by one digital information unit prior to instructions (b)
accumulating the length datum.

US 9,281,990 B2

13

17. The device according to claim 15 wherein instructions
(d) further comprises post-pending the extra digital informa-
tion unit to the payload.

18. The device according to claim 17 further comprising
transmitting the data packet unit-by-unit in real-time.

19. The device according to claim 15 wherein instructions
(b) further comprises accumulating the running sum in a
register having a most significant digital information unit and
a least significant digital information unit.

20. The device according to claim 19 wherein instructions
(c¢) further comprises calculating the compensation value
equivalent to the formula ~(MS+LS-1)+~checksum where
MS is the most significant digital information unit, LS is the
least significant digital information unit and ~ is a bit inver-
sion operator.

10

15

14

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,281,990 B2 Page 1 of 1
APPLICATION NO. 1 13/769125

DATED : March 8, 2016

INVENTOR(S) : Takashi Hidai

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims
Please correct Claim 1 as follows:

Column 11, line 48, change “compensation” to -- dummy --.

Signed and Sealed this
Twenty-fourth Day of May, 2016

Debatle 7

Michelle K. Lee
Director of the United States Patent and Trademark Office

